Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
思路
d[i][j]表示word1的前i个字符到word2的前j个字符的距离
一、word1[i] == word2[j] 时, d[i][j] = d[i-1][j-1]
二、word1[i] != word2[j] 时,取下面三种情况的最小者
1. d[i-1][j] + 1 (添加)
2. d[i][j-1] + 1 (删除)
3. d[i-1][j-1] + 1 (替换)
初始条件:
d[i][0] = i
d[0][j] = j
代码
int minDistance(string word1, string word2) {
int len1 = word1.size();
int len2 = word2.size();
vector<vector<int> > d(len1+1, vector<int>(len2+1, 0));
for (int i = 0; i <= len1; ++i)
{
d[i][0] = i;
}
for (int j = 0; j <= len2; ++j)
{
d[0][j] = j;
}
for (int i = 1; i <= len1; ++i)
{
for (int j = 1; j <= len2; ++j)
{
if (word1[i-1] == word2[j-1])
d[i][j] = d[i-1][j-1];
else
{
d[i][j] = min(min(d[i-1][j]+1, d[i][j-1] + 1), d[i-1][j-1]+1);
}
}
}
return d[len1][len2];
}

支付宝打赏
微信打赏