雅乐网

计算机技术、学习成长

Andrew Ng机器学习课程笔记1——概述

Andrew Ng机器学习课程笔记1——概述

本笔记是我学习Coursera上Andrew Ng的机器学习课程的笔记。除了课上内容外我也会补充一些其他地方的资料。如有错误欢迎大家指正。 什么是机器学习(Machine Learning) 从维基百科里可以看到, Machine lear

Andrew Ng机器学习课程笔记8——聚类和降维

Andrew Ng机器学习课程笔记8——聚类和降维

聚类(clustering) 非监督学习(Unsupervised Learning) 聚类算法是本课程学习的第一个非监督学习算法,在第一周就介绍过非监督学习。非监督学习中,数据集中的数据没有任何标签(正确答案),只有x,没有y。数据可能是

Andrew Ng机器学习课程笔记4——神经网络:表达

Andrew Ng机器学习课程笔记4——神经网络:表达

神经网络是受人脑的启发而出现的模型,目前得到了广泛应用,例如语音识别和手写体识别。 一、引入 1. 非线性假设 假设有两个特征,使用最多二次项来预测,则有 $$h(x) = g( \theta_0 + \theta_1 x_1 + \the

Andrew Ng机器学习课程笔记6——机器学习应用建议和系统设计

Andrew Ng机器学习课程笔记6——机器学习应用建议和系统设计

前面几周介绍了几种机器学习算法,本周主要讲当你的机器学习算法效果不好时应该如何改进。 评估一个机器学习算法 效果不好时该做什么 当用训练好的模型来评估时,如果我们发现有较大的误差,可以采取下面的措施: 1. 使用更多的训练集 2. 使用更少

Andrew Ng机器学习课程笔记3——逻辑回归和正则化

Andrew Ng机器学习课程笔记3——逻辑回归和正则化

逻辑回归(Logistic Regression) 逻辑回归虽然带有“回归”两个字,实际上却是分类问题,此时要预测的值y是离散的。例如判断一封邮件是否是垃圾邮件,判断肿瘤是恶性还是良性。 先从二元逻辑回归问题开始,也就是y的值只有0和1两种

Andrew Ng机器学习课程笔记5——神经网络:学习

Andrew Ng机器学习课程笔记5——神经网络:学习

这一周主要介绍如何训练得到神经网络中的参数。上一周中说了神经网络的模型 上面的神经网络共4层,用L = 4表示。上图输入3个特征。输出4个分类,用K= 4表示。用\(S_i\)表示第i层的结点个数,上图中有\(S_1 = 3, S_2 =

Andrew Ng机器学习课程笔记2——线性回归

Andrew Ng机器学习课程笔记2——线性回归

单变量线性回归 假设我们有下面的房子面积和房价的数据 面积 价格 2104 460 1416 232 1534 315 852 178 … … 这些已有的数据我们称之为训练集(Training Set)。我们通常使用